翻訳と辞書
Words near each other
・ Dynamic and formal equivalence
・ Dynamic angiothermography
・ Dynamic antisymmetry
・ Dynamic aperture
・ Dynamic aperture (accelerator physics)
・ Dynamic apnea
・ Dynamic Armor
・ Dynamic array
・ Dynamic assessment
・ Dynamic asset allocation
・ Dynamic balance
・ Dynamic bandwidth allocation
・ Dynamic Bayesian network
・ Dynamic binding
・ Dym (band)
Dym equation
・ Dyma'r Dystiolaeth
・ DYMA-TV
・ Dymacz
・ Dymaean Wall
・ Dymalloy
・ Dymares
・ Dymas
・ Dymascus porosus
・ Dymasia
・ Dymaxion
・ Dymaxion car
・ Dymaxion Chronofile
・ Dymaxion deployment unit
・ Dymaxion house


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dym equation : ウィキペディア英語版
Dym equation

In mathematics, and in particular in the theory of solitons, the Dym equation (HD) is the third-order partial differential equation
:u_t = u^3u_.\,
It is often written in the equivalent form
: v_t=(v^)_.\,
The Dym equation first appeared in Kruskal 〔Martin Kruskal ''Nonlinear Wave Equations''. In Jürgen Moser, editor, Dynamical Systems, Theory and Applications, volume 38 of Lecture Notes in Physics, pages 310–354. Heidelberg. Springer. 1975.〕 and is attributed to an unpublished paper by Harry Dym.
The Dym equation represents a system in which dispersion and nonlinearity are coupled together. HD is a completely integrable nonlinear evolution equation that may be solved by means of the inverse scattering transform. It is interesting because it obeys an infinite number of conservation laws; it does not possess the Painlevé property.
The Dym equation has strong links to the Korteweg–de Vries equation. The Lax pair of the Harry Dym equation is associated with the Sturm–Liouville operator.
The Liouville transformation transforms this operator isospectrally into the Schrödinger operator.〔Fritz Gesztesy and Karl Unterkofler, Isospectral deformations for Sturm–Liouville and Dirac-type operators and associated nonlinear evolution equations, Rep. Math. Phys. 31 (1992), 113–137.〕
Thus by the inverse Liouville transformation solutions of the Korteweg–de Vries equation are transformed
into solutions of the Dym equation. An explicit solution of the Dym equation, valid in a finite interval, is found by an auto-Bäcklund transform
: u(t,x) = \left(- 3 \alpha \left( x + 4 \alpha^2 t \right) \right )^ .
==Notes==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dym equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.